
DECOMPOSITION-BASED FAILURE MODE IDENTIFICATION METHOD

FOR RISK-FREE DESIGN OF LARGE SYSTEMS

Irem Y. Tumer, Ph.D. "
Research Scientist

Computationa Sciences Division
NASA Ames Research Center

Moffett Field. CA 94035-1000

Email: itumer¢._mail.arc.nasa.gov

Phone: 650-604-2976

Robert B. Stone, Ph.D.

Assistant Professor

Department of Basic Engineering

University of Missouri-Rolla

Rolla, MO 65409-0210

Email: rstone @umr.edu

Phone: 573 341 4086

Rory A. Roberts
Graduate Research Assistant

Department of Mechanical Engineering

University of Missouri-Rolla

Rolla, MO 65409-0210

ABSTRACT

When designing products, it is crucial to assure failure and risk-free operation in the intended operating

environment. Failures are tyFically studied and eliminated as much as possible during the early stages of

design. The few failures that go undetected result in unacceptable damage and losses in high-risk applica-

tions where public safety is oi: concern. Published NASA and NTSB accident reports point to a variety of

components identified as sour,;es of failures in the reported cases. In previous work, data from these reports

were processed and placed in matrix form for all the system components and failure modes encountered,

and then manipulated using matrix methods to determine similarities between the different components and

failure modes. In this paper, lhese matrices are represented in the form of a linear combination of failures

modes, mathematically formed using Principal Components Analysis (PCA) decomposition. The PCA de-

composition results in a low-dimensionality representation of all failure modes and components of interest,

represented in a transformed coordinate system. Such a representation opens the way for efficient pattern

analysis and prediction of faih:re modes with highest potential risks on the final product, rather than making

decisions based on the large st_ace of component and failure mode data. The mathematics of the proposed

method are explained first using a simple example problem. The method is then applied to component failure

data gathered from helicopter accident reports to demonstrate its potential.
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PRELIMINARIES

Prevention of potential failuze modes during product development is especially crucial in high-risk aerospace

applications, where failures are unacceptable at any frequency. Failures modes are analyzed thoroughly during the

early stages of design to prevent occurrence during operation. However, the number of failure modes for each of

the components that make up a s3 stem can be overwhelming when predictions are performed, especially in complex

systems. In our work, component, failure, and functionality information is derived from engineering drawings and

specifications, accident reports, av.d functional bases, to establish a link between functionality of components and the

potential failure modes (Collins a_d Hagan, 1976; Harris et al., 2000; NTSB, 2001; Stone and Wood, 2000; Shafer,

1980). This information has been ,tsed by the authors to draw similarities between different designs (Turner and Stone,

2001; Roberts et al., 2002; Turner _:tal., 2002) using matrix manipulations of the component, failure, and functionality

data. The overall goal of our wolk is to address the failure modes early in conceptual design: to achieve this goal,

functions are mapped to failure r_odes that are experienced by a component that performs the particular functions

(Turner and Stone, 2001; Roberts :It al., 2002; Tumer et al., 2002).

In the current paper, we prese_tt a means of decomposing large design problems for failure analysis and prevention

purposes. In the case of complex engineering systems, the number of components and their interactions with each

other, as well as their interactions with the operating environment, can be overwhelmingly large. Working from

the original component-failure, c_,mponent-function, and failure-function matrices can be especially difficult when

predictions need to be made to d+_termine safety, performance, and the associated risks. To address this problem,

in this paper, we present an insigltful approach to decompose the initial matrices (derived for the function-failure

similarity analysis) and derive a lo_v-dimensional representation of the large space of components, failure modes, and

functions of relevance. Specifical y, this paper proposes a decomposition method which reduces the dimensionality

of the function-component-failure space by means of an orthogonal transformation. The focus is on components and

their failure modes, where each cumponent is related to the potential failure modes. The orthogonal decomposition

provides a method of determining the failure modes that have the most impact, as well as the failure modes that are

redundant in the information that they provide. During the early design stages, the failure modes with more potential

may be concentrated on in order t_ reduce risk, as well as reduce design time and cost. Using such a decomposition

approach, the designer can focus _m the failure modes that have the potential of becoming a risk factor during the

lifecycle of the complex system uwder investigation.

Failure Prevention and Reliability for Design

Reliability, maintainability, a_d effectiveness of machines and systems depend heavily upon the understanding,

recognition, and prevention or elim Lnation of mechanical failures (Collins and Hagan, 1976). The quality of a particular

design depends heavily on the ability of the product to function in the given lifecycle, as defined by the customer or

user of the product (Ruff and Paasch, 1993). As products become more complex, prevention of failure modes through

analysis in the early stages of desi_n becomes very complex and cumbersome.

For applications such as aircraft, the risks associated with missed failures is very high: not only is safety a major

issue due to high probability of fatalities (Harris et aI., 2000), but the costs involved in repairs and downtimes can

become a major burden. A study b;_ Boeing Company showed that, for a fleet of I00 aircraft, the costs generated from



delaysduetoaircraftfailureisabout$2Mperyear.(Thisaccountsforrevenueloss,increasedhandlingofpassengers
andcargo,andextracrewwages.)The cost of maintenance alone acids another $4M per year (Stander, 1982; Ruff and

Paasch, 1993). In order to elimin;_te or reduce the possibility of failure, designers and manufacturing engineers need

to be aware of all of the potentially significant failure modes in the systems being designed.

There are several techniques of identifying failure modes, commonly used during conceptual design. Some exam-

pies of these techniques are check] ists, FMEA (failure modes and effects analysis) and FMECAs (failure modes effects

and criticality analysis), and FTA:_ (fault tree analysis) (Carter, 1997; Henley and Kumamoto, 1992). The details of

these methods are explained in (q-amer and Stone, 2001) for reference. In our work, we make use of the information

gathered for such techniques, and combine it with information from NTSB and NASA accident reports, maintenance

guides, and engineering specifications. This information is then presented to the designer in a form that is easy to

analyze and use during the early stages of design. The methods developed in this work are meant to augment the

information derived from the mor," traditional approaches (Turner and Stone, 2001; Roberts et al., 2002; Turner et al.,

2002).

Orthogonal Decomposition for Dimensionality Reduction

The orthogonal decompositicn method proposed in this work is based on previous work reported by Turner et

al. (Tumer et al., 2000) to extract t:igh-variance modes from product surface profiles. This method is extended here to

isolate the failure modes with the t:ighest variance, to determine tradeoffs during component development and provide

a low-dimensional representation of the significant failure modes for potential classification and prediction purposes

(Turner and Stone, 2001).

Consider an m x n input matri:,: X, whose columns consist of the variables under study, and whose rows correspond

to each observation. The n x n co,'ariance matrix is computed by first computing the 1 x n mean vector X, removing

the mean vector from each of the m observations, and computing Zx = X0rX0/(m - 1) (m - 1 is the rank of the

n × n symmetric covariance matrb: if m < n, losing one additional degree of freedom due to the removal of the mean

vector) (Fukunaga, 1990).

The semi-positive definite sylametric covariance matrix will result in k nonnegative eigenvalues, where k is the

rank of the matrix, determined by the number of independent rows. In this case, if m < n, and losing one degree

of freedom by removing the mean vector, the rank k of the covariance matrix equals m - 1. The eigenvalues and

eigenvectors of the covariance matrix are computed using the characteristic equation of the Yx matrix, namely IXx -

)d] = 0, with the eigenvectors con esponding to two different eigenvalues _,i and _j being orthogonal. This equation

can be rewritten in matrix form as Zx × V = V x D, subject to the orthornormality constraint V r x V = I, with the

following eigenvalue (diagonal) an d eigenvector matrices:

0

D .... • V = [VtV2...Vn].

The eigenvector V can be used as the transformation matrix to transform the n-dimensional X0 to another vector Y

using the orthogonal transformatioa Y -- V T × X0, where the covariance matrix of Y is D (from Zy = V 7"× Zx × V =

D).

This final observation leads tc several important conclusions: 1) The orthogonal transformation may be broken

down to r separate equations Yi = '_i7"× X; 2) Y represents X in the new coordinate system spanned by V1,..., V,,, and

hence is a coordinate transformation; 3) The transformation matrix is the eigenvector matrix of Zx. Since the eigen-



Figure 1. A Desktop Rotating MachineryTestrig.

vectors are the ones that maximi2e the distance function d2(X), we are in effect selecting the principal components

of the distribution as the new coo: dinate axes; 4) The eigenvalues are the variances of the transformed variables Yi; 5)

Since the transformation is orthogonal, Euclidian distances are preserved, i.e., ][YI]2 = I[X]]2. When the eigenvalues

are listed in ascending order, the resulting eigenvectors correspond to the principal components starting with the high-

est variance, indicated by the amplitude of the corresponding eigenvalues. The input matrix can be then represented

in this new coordinate system usir_g the orthogonal transformation (Fukunaga, 1990).

DECOMPOSITION-BASED FAILURE MODE IDENTIFICATION METHOD

The orthogonal decomposition method described above is used in this work to decompose the space of failure

modes and component functions for large complex systems. It is intended as a means to focus attention on the

significant failure modes based ol the maximum variance criterion. To explain the derivation of the eigenvectors,

eigenvalues, and corresponding w eights, a simple example problem using a rotating machinery simulator model is

used next.

Test Rig Example

The simple example hypothesizes that the design of a rotating machinery test rig goes through detailed analysis

by design engineers to assure failu_'e and risk-free performance (Turner and Stone, 2001). The test rig design includes

a shaft attached to a motor by me:ms of a coupling, supported by two sets of ball bearings, which drives a gear box

via two belts, which in turn drives a load, shown in Figure 1. This system is located at NASA Ames Research Center,

whose purpose is to simulate vibrational fault situations (Turner and Huff, 2002). The same example was used in

demonstrating the mechanics of the function-failure similarity method developed by Turner and Stone in (Turner and

Stone, 2001). Some duplication of the explanation of initial matrices is allowed in this paper for clarity.

Initial Matrices

Three components considered in this example are: the shaft, gears, and bearings (Turner and Stone, 2001). Let C

be an m x 1 vector of subsystems and/or components for the application domain under study (e.g., rotorcraft, aircraft,

space spation, mars rover, mars polar lander, etc.) Let F be an n x 1 vector of failures commonly found in that

application domain. Selecting a stLbset from elementary failure modes, these components are assumed to be subject

to wear, fatigue, corrosion, frettin_, and impact failure modes (Collins and Hagan, 1976). The m component vectors

are aggregated together to form CF, the m x n component-failure matrix, where n is the total number of failure modes

occuring across all m components The matrix has n failure modes in its columns (representing the variables), and



Table 1. Component-Failure Matrix CF.

f ] 1 0 1 11 0 1 1 0

i o 1 u o I I

Table 2. PC Matrix for CF.

0.3943 -0.5869 0.0425 0.7058 o.0o0o

-0,4792 -0.3220 -0.5750 0.0347 -0.5787

0.4792 0.3220 -0.7877 0,0475 0.2095

0.3943 -0.5869 -0.0425 -0.7058 -0.00oo

-0.4792 -0.3220 -0.2128 0.0128 0.7882

Table 3. SC Matrix for CF.

-0.2163 -0.7133 -0.0000 0.0000 -0.0000

1.2214 0.2527 -0.0000 -0.0000 0.0000

-1.1)050 0.4606 -0.0000 -0.0000 -0.0000

Table 4. LAT Vector (Eigenvalues) for CF.

m components in its rows (representing the various observations). Table 1 presents the aggregated component-failure

matrix, with l's representing an o,-currence of a failure for a given component, and O's representing non-occurrence.

Note that the columns correspond to the failure modes (F1 is wear, F2 is fatigue, F3 is corrosion, F4 is fretting, and

F5 is impact), and the rows corre;pond to the components under study (CI is a gear, C2 is a bearing, and C3 is the

shaft.)

Principal Axes of Variation for Design

Let ,_,CF = CF r x CF/(m - 1, be the covariance matrix of the component-failure matrix CF, an n × n symmetric

matrix (n is the number of elemental failure modes). In this work, Principal Components Analysis (PCA) is used to

compute the transformed variables, eigenvectors, and eigenvalues, described in the previous section. In the following,

the PC matrix corresponds to the ,dgenvector matrix V, the SC matrix corresponds to the transformed vector Y, and

the LAT vector contains the diag(,nal elements of the eigenvalue matrix D, which represent the eigenvalues of the

covariance matrix of the input dat_.

The input matrix CF, with m -- 3 and n = 5, is defined in Table 1. Using the centered input vector CF0 = CF- CF,

the PCA script in Matlab results in the principal components, scores, and latent values, shown in Tables 2, 3, 4.

The PC matrix provides the cigenvectors of the 5 x 5 covariance matrix, providing the coefficients of the new

coordinate system described by the principal axes, with respect to the old coordinate system described by the variables

F1, F2, etc. The columns of thi.,, matrix correspond to each of the principal components, and the values in each

row represent the coordinate basecl on the original variables Fi. The principal axes correspond to the directions with

maximum variability, and provide a simpler and more parsimonious (low-dimensional) description of the covariance

structure (Johnson and Wichern, 1 )92). The coordinate transformation is shown schematically in Figure 2 for a case
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Figure 2. Coordinate Transformation Using PCA.

with three variables F 1, F2, and t'3 only.

As an example, the first princi pal component can be used to describe the original variables in the transformed coor-

dinate system as a linear combination of all five failure modes as follows: pcl = 0.3943F1 - 0.4792F2 + 0.4792F3 +

0.3943F4 - 0.4792F5. Using this relationship, the designer can deduce that F2, F3 and F5 have a higher effect than

F1 and F4, and that F2 & F3 haee an equal but contrasting effect on the first principal component, and so on. The

eigenvalues of the covariance matrix are represented in the/_AT vector, shown in Table 4. Note that with an eigenvalue

of 1.27, the first principal compor ent accounts for 76.46% of the total variance in the data, and hence is sufficient to

represent the failure information in a simpler (more parsimonious) manner, and can be considered as a model of the

sample data. The second principal component has an eigenvalue of 0.39, and accounts for the remaining 23.54% of

the variance. (There are only two eigenvalues in this case since the rank of the covariance matrix is m - 1 = 2. The

rest of the eigenvalues belong to tl:e null space.)

The scores in the SC matrix p;ovide the relative weight for the eigenvectors on each of the observations (compo-

nents), and are computed as CF0 > PC. The scores are then interpreted as corresponding to the pattern of the variation

for each eigenvector over the different machinery components (Ci) under study. The first column of the SC matrix

corresponds to the first principal component, with each row corresponding to each component CI, C2, and C3 (obser-

vations). The second column corresponds to the second principal component. (The remaining columns belong to the

null space, since the rank of the covariance matrix in this case was m - 1 = 2.) The variance of the scores for the first

principal component (first column of SC) equals the first eigenvalue (_-i = 1.27), and the variance of the scores for the

second principal component equais the second eigenvalue (_,2 = 0.39). Using this example, for the first component

C1 (gear), the first principal mode has a weight of -0.21, whereas for the second component C2 (bearing), the same

principal mode has a weight of 1.22, hence indicating a stronger influence on this component.

The transformed representatic,n of the failure information in terms of a principal mode can be used by designers

to decide on tradeoffs in terms of tailures. For example, failure modes F2, F3 and F5 have a more significant effect

on the overall performance and qu.dity of the product than failure modes F 1 and F4, as indicated by the first column

of the PC matrix. Based on this information, the designer might want to pay closer attention to the first three modes,

and not be as concerned with the last two modes. For example, in this case, the bearing component C2 depends more

heavily on these three modes, as indicated by the first column of the SC matrix.
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APPLICATION TO THE RISK-FREE DESIGN OF LARGE SYSTEMS

To assure a failure and risk-flee product, designers make use of any information and previous knowledge about

potential failure modes that mighl occur during a system's lifecycle. In this work, we propose to reduce the load on

the designer by concentrating on ._ linear transformation of failure and component data gathered from real accident

reports, eliminating the need to s,_rt through large amounts of data. A feasibility study is presented in this section

using a rotorcraft system as an ex_,mple, first introduced in (Roberts et al., 2002).

Rotorcraft Failures and Functions

The application is a Bell 206 helicopter whose army counterpart, an OH58 helicopter, is located at NASA Ames

for flight research purposes (Huff et al., 2002). Helicopter accident reports published by the National Transportation

and Safety Board and NASA were carefully studied to determine the common failure modes and the components and

subsystems affected by these failures (Harris et al., 2000; NTSB, 2001; Roberts et al., 2002). Maintenance guides,

engineering schematics, and desig:l specifications for this type of rotorcraft were studied thoroughly to determine the

components and subsystems of relevance (Shafer, 1980).

The engine and power train subsystems were identified as the primary systems where failures occurred. As an

example, a schematic of the turbire system contained inside the engine of a Bell 206 helicopter is shown in Figure 3,

along with a detailed description c,f the components contained in the assembly (Roberts et al., 2002). 29 components

and subsystems were identified a:. potentially causing failures. These components had a total of 10 failure modes



Ta_)le 5. Components from Helicopter Accident Reports (C).

Element Description

C1 air discharge tubes

C2 bearing

C3 bleed valve

C4 bolt

C5 compressor case

C6 compressor mount

C7 compressor wheel

C8 coupling

C9 diffuser scroll

CI0 exhaust collector

Cll fire wall

C12 front diffuser

C13 front support

C14 governor

C15 housing

C16 impeller

C17 mount

C18 nozzle

C19 nozzle shield

C20 O ring

C21 P3 line

C22 plasting lining

C23 pressure control line

C24 pylon isolator mount

C25 rear diffuser

C26 rotor

C27 shaft

C28 spur adapter gearshaft

C29 turbine wheel

Tab e 6. Failure Modes from Helicopter Accident Reports (F).

Element Description

F1 bond failure

F2 corrosion

F3 fatigue

174 fracture

F5 fretting

F6 galling and seizure

F7 human

F8 stress rupture

F9 thermal shock

FI0 wear

reported in the accident reports. Ti_ere were I000 accident reports involving the Bell 206 helicopters, and 69 of these

corresponded to component failures for the engine and power train. Tables 5 and 6 present the components and failure

modes extracted from the reports (Roberts et al., 2002).

Reduction of the Component-Failure Space for Design Use

Using the vectors from Table_, 5 and 6, the input matrix CF, with m = 29 and n = 10, is defined as in Table 7.

With the mean vector removed, tht- PCA decomposition results in the principal components, scores, and latent values



Tabe 7. CF matrix from helicopter failure and component data.

0 0 0 0 0 0 0 0 0 0

0 0 4 0 0 I 0 0 I 1

0 0 0 0 0 0 0 0 0 0

0 0 I 0 1 0 0 0 0 1

0 l 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 2 0 0 0 0 1 2 0

0 0 2 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 2 l 0 0 0 0 0 1

0 0 0 0 0 0 0 0 ! 1

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0 0 1

0 0 0 0 0 0 0 0 0 l

0 0 0 0 0 0 0 0 0 0

0 0 2 0 l 0 0 0 0 0

o o o o o o o o o 2

o o o o o o o o o o

0 1 0 0 0 0 0 0 0 0

l 2 0 0 0 0 0 0 l 0

o o 5 o o o o o o o

0 0 4 0 0 0 0 1 5 0

shown in Table 8.

From the PC matrix in Table 5, the first principal component can be used to describe the original variables in the

new (transformed) coordinate sysrzm as a linear combination of all 10 potential failure modes as follows:

pcl = -0.0079F1 - 0.0438F2 + 0.8786F3 + 0.0134F4

+ 0.0132F5 + 0.0467F6 - 0.0131F7 + 0.1023F8

+ 0.4604F9 + 0.0308F10. (1)

The first principal component is a transformed version of the original failure modes, with the coefficients indicating the

relative significance of each failur:: mode. As observed, failure modes F3, F8, and F9 have the highest contribution

to the first principal component. -['he variance of the scores for the first principal component (first column of SC)

equals the first eigenvalue in the _T vector (Xt = 2.40, 67.3%), and the variance of the scores for the second principal

component equals the second eigeavalue (X2=0.73, 18.86%). Using the SC matrix in Table 8, a plot of the first score

vector is shown in Figure 4, whict' shows the distribution of the first principal component over the 29 components in

the subsystems being studied. In tais example, components C2 (bearing), C7 (compressor wheel), C28 (spur adapter

for gear shaft), and C29 (turbine _ heel) have the highest weighting for the first principal component.



Scores for 1 st PC sho_ng the dislr=butlon over the 29 components
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Figure 4. Distribution of Scores for 1st PC over the29 Components.

Potential Uses and Benefits

In this work, we are proposir g the decomposition provided by the PCA transformation as a tool to analyze and

predict the effect of potential fail,ire modes on the system being designed. In the helicopter case study above, the

first principal component, which Js a linear combination of all 10 failure modes obtained from the accident reports,

explained 67.3% of the total variance in the CF data, followed by the second principal component which explained

18.8% of the total variance, adding: up to over 85% of the total variance in the data. The scores corresponding to these

two principal components determirle the weight of each of the 29 components under study. The principal components

with the highest variance and their relative effects on the design components can be studied using the scores, as

shown in Figure 4, eliminating the need to go through every component and failure combination. When starting from

large component-failure matrices _CF) for complex systems, the decomposition provided by this method will enable

a study of the most critical failurt: modes in an efficient way. Using a large database of components, systems, and

potential failure modes, the few d_ minant principal components (high-variance eigenvectors) resulting from the PCA

decomposition can be used as a "model" of the component-failure information in the system. Any new component or

set of components can be compared with this model to predict the severity of the potential failures.

Consider, for example, a large component-failure matrix CF for a complex engineering system, decomposed using

the PCA-based approach presentec here, and reduced to three principal components pcl = Y_'_cqFi, pc2 = Y_7_3iFi, and

pc3 = Y_'y,F/. These three eigen_ectors in the transformed domain are assumed to contain the majority of the total

variance in the original data (see ,lerivation above.) The three eigenvectors can be stored as the model of the large

component-failure database and u, ed to analyze a new set of components subject to a given failure modes. Let X be

a k x 1 vector of components under study to determine the effect of a potential failure mode F/. The projection of the

new vector X onto the individual eigenvectors represented by pel, pc2, and pc3, computed as X x pcl r will provide

the relative weighting of the first principal component on the components under investigation. Such an approach will

help designers concentrate on the components that have the highest potential of exhibiting the particular failure mode.

A similar analysis can be carried ,_ut for a single component subject to a number of failure modes contained in the

original database of components a_d failures.



CLOSURE

This work aims to provide dt sign methodologies for failure and risk-free product design in complex engineering

systems. This paper discussed an approach to reduce the dimensionality of overwhelmingly large component-failure

information (required for the fun_:tion-failure similarity analysis published previously) by means of a mathematical

decomposition using Principal Components Analysis. The fundamentals of the method were demonstrated using a

simple test rig example, followed by an application of the method to a case study of failures and components extracted

from helicopter accident reports. The potential use in design was discussed in terms of providing a low-dimensional

model of the component and faihtre database. The method requires a large database of all possible components and

failure modes for a set of subsystems, either from maintenance manuals, FMEA documents, or accident reports. The

purpose of the paper was to demo _strate initial feasibility. Further analysis of large complex systems and their failures

is necessary to establish the value of taking such a decomposition approach to failure-free product design. A large

anomaly/problem reporting database at NASA's Jet Propulsion Laboratory is currently being studied for analysis using

the methods discussed in this pap,_r.
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Tab!,._ 8. The resulting PC, SC, and LAT for CF (helicopter data.)

PC =

-0.0079 0.065 l -0.0297 -0.3337 0.0298 -0.0044 -0.0206 -0.0548 -0.5405 -0.7661

-0.0438 0.161 -0.1372 -0.9087 0.0196 -0.0204 -0.0431 0.0734 0.2579 0.2302

0.8786 -0.425 _ -0.1795 -0.0876 -0.0297 -0.0058 -0.0415 0.0641 -0.0222 0.0106

0.0134 -0.051 -' 0.0366 -0.0254 -0.1267 -0.7826 -0.0617 -0.5976 0.0757 -0.0044

0.0132 -0.069:_ -0.0129 0.0113 0.9766 -0.0001 -0.0060 -0.1939 0.0585 0.0002

0.0467 -0.053 0.0253 -0.0495 -0.1501 0.5310 0.3261 -0.6415 0.3558 -0.2073

-0.0131 -0.007l 0.0769 0.0134 -0.0531 0.2683 -0.9280 -0.2390 0.0077 0.0237

0.1023 0.186; 0.0299 0.1200 0.0316 -011796 -0.1427 0.3186 0.6968 -0.5468

0.4604 0.814 ; 0.2587 0.0663 0.0405 0.0262 0.0459 -0.1126 -0.1383 O. 1321

0.0308 -0,284 _ 0.9339 -0.1818 0.0128 -0.0116 0.0468 0.1002 0.0200 -0,0037

SC=

-0.8998 0.140i -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142

3.1525 -1.083 _ 0.2512 -0.2732 -0.2713 0.5369 0.2948 -0.4120 0.1238 -0.0508

-0.8998 0.140 _ -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142

0.0229 -0,638 _ 0.4928 -0.0158 0.9040 -0.0029 0.0414 -0.0442 0.0313 -0,0071

-0.9436 0.301 _ -0.3859 -0.6665 -0,0361 -0.0058 -0.0008 0,0587 0.2329 0.2160

-0.0212 -0.284 ' -0.4282 O. 1546 -0.0854 0.0087 0.0007 0.0495 -0.0472 -0,0036

1.8805 1.104' -0.0604 0,3196 -0,0025 -0.1243 -0.0918 0.2070 0.3508 -0.2757

0.9190 -I.278 _ 1.260l -0.2965 -0.0895 -0.0203 0.0527 0.3140 -0.0294 -0.0004

-0.8998 0.140,_ -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142

-0.8998 O. 140q -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142

-0.8998 0.140,_ -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142

-0.8998 O.140q -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142

-0.8998 0.140,, -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142

0.9016 -1.045,, 0.3628 -0.1402 -0.2290 -0.7913 -0,0558 -0,3838 0.0263 -0.0011

-0.4085 0.670.- 0.9439 0.1268 -0.0024 0.0292 0.1349 -0.0271 -0.1433 0.1142

-0.8998 0.140_, -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142

-0.0212 -0.284' -0.4282 0.1546 -0.0854 0.0087 0.0007 0.0495 -0.0472 -0.0036

-0.8998 0.140_, -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0,0142

-0.8998 0,140_, -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142

-0.8820 -0,151 0.7621 0,0739 -0.0960 0.2713 -0.8390 -0.1535 0.0027 0.0058

-0.8689 -0.143" 0.6852 0.0605 -0.0429 0.0030 0.0890 0.0855 -0.0050 -0.0179

-0.8998 0.140- -0.2487 0.2422 -0.0557 0.0146 0,0422 4).0147 -0.0250 -0.0142

0.8706 -0,77% -0.6206 0.0783 0.8615 0.0028 -0.0469 -0.0803 -0.0109 0.0072

-0.8381 -0.428 1.6191 -0.1213 -0.0301 -0.0086 0.1358 0.1857 0.0150 -0.0216

-0.8998 0.140_, -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142

-0.9436 0.30h, -0.3859 -0.6665 -0.0361 -0.0058 -0.0008 0.0587 0.2329 0.2t60

.-0.5349 1.342" -0.2940 -1.8426 0.0538 -0.0045 -0.0186 -0.0352 -0.1880 -0.1878

3.4931 -I.985 -1.1463 -0.1959 -0.2042 -0.0145 -0.1655 0.3060 -0.1359 0.0387

5.0190 2.696 _ 0.3568 0.3432 0.0596 -0.0573 -0.0372 -0,0024 -0.1084 0.1416

2.4096 I

0.729I I

0.3540 I

0.1972 I

0.0646 I
LAT =

0.0361 I

0.0323 I

0.0229 I

0,0124 I

0.OO88 I


